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The existing models for predicting the elastic moduli of polymers dispersed with particles 
of shape other than spheres and continuous fibres are reviewed. The applicability and 
limitation of these equations are discussed. The emphasis of the review is to seek a unified 
understanding and approach to the effect of particle shape at finite concentration on the 
elastic moduli, thermal expansion coefficient, stress concentration factor, viscoelastic 
relaxation modulus and creep compliance of filled polymers. The effects of anisotropic 
particle shape on mechanical properties of polymeric composites are clearly illustrated. 
Attention is also drawn to the relationship between elastic moduli, thermal expansion, 
creep elongation and stress relaxation moduli. 

1. Introduction 
The relation between the structure of two-phase 
materials and their properties has been reviewed in 
the past decade by many authors [1-12] .  They 
concern systems in which the matrix is a polymer 
and the second-phase reinforcement is in the form 
of dispersed particles. In general, the deformational 
behaviour of a filled system depends not only on 
the material properties of the two components and 
the volume fraction of the filler, but also on the 
size, shape, orientation, and the state of adhesion 
between the filler and matrix. Composites are 
commonly characterized by the particle shape of 
the reinforcement. The most extensive investiga- 
tion has focused on two main combinations: an 
isotropic material filled with spherical particles 
and continuous fibre-reinforced plastics. The 
analyses range from empirical to sophisticated 
methods including a self-c onsistent model [13-15], 
variational [16] and exact [17, 18] methods 
based on elasticity theory. 

This review discusses theoretical models dealing 
with the effects of particle shape on the mechani- 
cal properties of polymeric composites which have 
not received as much attention in the literature. 
The text is divided into sections covering the 
status of existing theories on elastic modulus, a 
new approach to analyse the filler-filler inter- 

action, the anisotropic shape effect on elastic 
moduli, thermal expansion, stress concentration 
and viscoelastic responses. The emphasis is to 
provide a unified understanding and approach 
to the effect of shape on various properties and to 
illustrate the anisotropic behaviours of spheres 
which are stretched into a rod shape (fibrous) 
or compressed into disc-like particles. The possible 
cross relationship between the elastic moduli 
and thermal expansion is also mentioned. Fol- 
lowing a brief survey of theoretical result 
obtained in earlier work, individual models will 
be examined. 

2. Literature survey 
Consider a two-phase composite consisting of 
aligned particles randomly distributed in the 
matrix. The filler is assumed to be uniform in size 
and firmly bonded to the matrix. Both the filler 
and the matrix are homogeneous and isotropic. In 
this review, Ef and Em refer to Young's moduli for 
the filler and matrix, respectively./~ and/Ira are 
the corresponding shear moduli, the volume frac- 
tion of filler is ~b and the aspect ratio p. The primary 
interest has been the determination of the compo- 
site tensile modulus, Eli , in the longitudinal 
direction as a function of the aspect ratio p and 
composition ~b. Usually the relationships for esti- 
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mating the elastic moduli of two-phase materials 
are complex. 

2.1. Bounds  on the  modulus  
The simplest cases are the two bounds [1, 18, 19] 
for predicting the tensile modulus. The upper 
bound is 

Ell = (1 -- 4~)Em + qSEf (1) 

which assumes equal strains in the two phases 
under elastic deformation. This equation contains 
only the composition variable and is often called 
the mixture rule and is known as the series model. 

If the stresses in the two phases are assumed 
equal, the lower bound of the modulus is governed 
by the parallel model 

1 - r + ( 2 )  
Ell = Em 

Equations 1 and 2 have been applied to various 
physical properties e.g. the coefficient of thermal 
expansion [20], dielectric constants [21], thermal 
conductivity [6] and shear and bulk moduli. 

2.2. Takayanagi ' s  model  
Takayanagi et  aL [22] combined Equations 1 and 
2 and proposed the series-parallel model 

Ell = X E m + ( 1 - - x ) E f  Ef (3) 

the matrix region is of volume fix and the filler 
region ( 1 -  ~X). Equation 3 was proposed to 
study the modulus of a crystalline polymer. The 
basic problem with the model is how to determine 
the values of ~ and X. 

2.3. Hydrodynamic models 
Equations developed in suspension rheology for 
the relative change in viscosity (filled to non-filled 
systems) were assumed to hold for the relative 
change in shear modulus [9-11] .  In these empirical 
and approximate models, the ratio of tensile 
moduli for the filled/unfilled systems is taken to 
be equal to the ratio of shear moduli. Familiar 
equations are those of Guth [23], Kuhn and 
Mooney [24, 25]. For example, Guth's equation 
has the form 

EII/E m = 1 + 0.67pq5 + 1.62p2~ 2 (4) 

where p is the aspect ratio which is the ratio of 
the length/width of fillers. Although the relation- 

ship between the modulus and viscosity is of 
interest, the prediction of moduli from viscosity 
relations is inaccurate. As pointed out by Nielsen 
[26], the viscosity ratio is often larger than the 
modulus ratio. 

2.4. The Cox equation 
This model [27, 28] is known as the shear-lag 
theory and does not take into account the normal 
stresses in the matrix. The tensile stresses are 
carried by fibres and the load is transferred from 
fibre to fibre by shear. The longitudinal Young's 
modulus of the composite Ell is given by 

where 

rf in rf) 2 

(5) 

and l is the length, rf is the radius and R is the 
centre-to-centre distance of the fibres. For hexa- 
gonal fibre packing [29]. 

= 2~rr~/(~/3  R ~) 
and 

z = 2p /am (6) 
f In (2rr/x/3 ~b 

The filler shape is characterized by the aspect 
ratio p = l/2rf where p is much greater than one. 

2.5. The  Ha lp in -Tsa i  equa t ion  
This is a simple empirical expression reduced from 
Hermans' solution containing a geometric fitting 
parameter A, obtained by fitting with the numeri- 
cal solutions of formal elasticity theory [18]. 
Composite moduli are put in the form 

Ell  = 1+ABe) 
(7) 

E m 1 --B~b 
where 

B = (ERIE m -- 1)/(Ef/Em + A ) ,  (8) 

A = 2(l/d) for tensile modulus. The ratio lid is the 
aspect ratio. The self-consistent method, which 
served as the foundation of Equation 7 has been 
applied more rigorously to short-fibre composites 
[15], however, their correlation has yet to be 
established. 

2.6. The Nielsen equation 
To account for the maximum packing fraction, 
Vm, of the filler, Nielsen has modified the Halpin- 
Tsai equation and proposed [30, 31 ] 

1874 



E H _ (1 +A)Br 
E m 1 - - B C r  ' (9) 

where B is defined as in Equation 8, (1 +A)  is re- 
lated to the Einstein coefficient which is equal to 
2.5 for rigid spheres in a matrix with urn = 0.5 and 
C is given by 

( -re,l--v4 C = 1 + 7--Tg---lq~. (10) 

Since both Equations 7 and 9 are empirical in 
nature, they have been used to describe many 
physical properties such as elastic moduli (shear, 
bulk and .Young's moduli) and thermal conducti- 
vity .[32] of polymeric composites. 

2.7. The  C h o w  equa t i on  
The author has recently derived a general theory 
for elastic moduli [33, 34] and thermal expansion 
coefficients [35] of a two-phase anisotropic 
heterogeneous material. The anisotropic particle- 
shape effect is characterized by the ratio of major 
to minor axes p =c / a  of a spheroid. For a 
uniaxially oriented structure, the tensile modulus 
is given by 

EI---L = 1 + ( k f / k r n  - -  1)G, + 2(Pf/Urn -- 1)K, 4~ 

Ern 2KIG3 + G1K 3 

(1l) 

where k is the bulk modulus, P is the shear modulus, 

Ki = 1 + ( k d / % -  1)(1 - r  
(i = 1,3) (12) 

G i = 1 + ( t a l u s -  1)(1 - r  

G i and fli are functions of the aspect ratio p and 
Poisson's ratio Pm of the matrix (see Appendix). 

2 . 8 .  S p e c i a l  cases  

In reviewing the effect of particle shape on the 
elastic moduli of filled polymers, it is helpful to 
briefly summarize the relations for modulus pre- 
diction in systems containing continuously aligned 
fibres [14, 16, 36-38]  (p -+ ~)  and for materials 
filled with spherical [13, 39-41]  (p = 1) particles. 
For comprehensive reviews on these subjects, the 
reader is referred to a recent review by Sendeckyi 
[21. 

For spherical inclusions, the mathematical 
theory of Kerner is the most versatile and best 
predicts experimental results over a wide volume 
fraction range [3]. Kerner's equations for bulk 
and shear modull are 
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Figure 1 Young's modulus tbr a glass bead-filled epoxy. 
Points are experimental data (from Kenyon and Duffy 
[421). 

k ( k f / km -- l)  r 
- 1 + ( 1 3 )  

k m 1 + (kf/k m -  1)(1 -- r o~ 

u (uf/urn - -  1) r 
- -  = 1 + (14 )  
Urn 1 "}- ( U f / U r n - -  ] ) ( l  - -  r  fl 

where a and 13 are functions of Poisson's ratio urn 
(see Appendix). An example of  the successful use 
of this equation is shown in Fig. 1 where the 
measured Young's modulus of a cross-linked 
epoxy resin filled with spherical glass beads [41] 
follows the curve computed from Kerner's 
equations. 

The combination of continuous aligned fibres 
has received much attention due to the interest in 
high-performance composites. Therefore, we want 
only to mention a simple limiting bound for the 
system. Experiments show that the longitudinal 
Young's modulus of a polymer filled with infinitely 
long aligned fibres follows the rule of mixture 
[3, 28], Equation 1. Fig. 2 demonstrates that the 
measured longitudinal Young's modulus for boron 
fibres in epoxy resin [42] compares well with the 
rule of mixtures, Equation 1. 

2.9. Discussion 
Having summarized the models available for pre- 
dicting the effective moduli of a filled polymer, 
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Figure 2 The longitudinal Young's modulus for boron in 
epoxy. Circles are experimental data (from Whitney and 
Riley [43]). 

their applicability and limitation will now be dis- 
cussed. The assumptions of equal strains or equal 
stresses in the two phases set the upper and lower 
bounds for elastic moduli, respectively. The actual 
modulus in the phase geometry lies between the 
values of Equations 1 and 2 which are generally 
too widely spaced to be useful. 

The hydrodynamic models approximate the 

shear modulus of rubbers containing rigid fillers 
of non-spherical shapes because the simple ratio 
relation used where the relative shear moduli are 
set equal to the relative viscosity is valid only 
when Poisson's ratio of the matrix is 0.5 and the 
modulus of the filler is infinitely greater than that 
of the matrix. Otherwise, the modulus ratio is 
considerably less than the viscosity ratio. There- 
fore, they are less preferable models from both a 
practical and theoretical view point. 

For predicting the longitudinal Young's modulus 
of a material filled with aligned fibres in the direc- 
tion of applied tensile load, the equations of Cox, 
Halpin-Tsai and Chow are compared in Fig. 3 for 
three filled and crystalline polymers which have 
the ratio Ef/Ern ranging from 21.2 (glass in epoxy 
resin), 100 (boron in epoxy resin) to 2400 (semi- 
crystalline polyethylene) at constant 4~ = 0.40. 
The Cox equation is limited for p = l/2rf >> 1. For 
lower values ofEf/Em, there is very little difference 
among the three equations, especially, for large 
aspect ratios. The discrepancy among them in- 
creases with increasing values of Ef/Em > 102 . In 
fact, Porter et al. [44, 45] have found the calcu- 
lated aspect ratio of crystallites in ultra-oriented 
semi-crystalline polyethylene from the Halpin-Tsai 
equation [46] is much greater than the measured 
value. A recent calculation [47] of crystalline 
shape by Chow's equation compares very well with 
the measurement. Since the matrix phase does not 
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Figure 4 The dependence o f  the  relative tensile modu lus  
on the  particle shape. 

carry any tensile stress and transfers only the shear 
load in the shear-lag theory, which generalizes the 
concept of hydrodynamic models, a much larger 
prediction of the relative tensile modulus (Ell/Era) 
is expected from the Cox equation. Fig. 3 reveals 
that for a given aspect ratio. 

Eli ~Era (Halpin-Tsai) < Eli ~Era (Chow) 

< R~l/L'm(Cox). (15) 
Experimental data of polymers containing aligned 
short fibres are insufficient for a meaningful com- 
parison. Accurate experimental verification of 
these equations is needed for aspect ratios other 
than one and infinity over a wide range of  El/Era. 

The distribution of particle size has an effect on 
the maximum packing fraction, Vm, of Nielsen's 
equation [30]. Mixtures of different particle sizes 
can pack more densely than monodispersed par- 
ticles and the maximum packing fraction ofprolate 
ellipsoids is higher than that of spheres. For a 
given concentration, a larger vm results in a lower 
composite modulus. A similar empirical modifi- 
cation of Kerner's equation has also been suggested 
by Nielsen by introducing the effective filler 
volume fraction which contains a curve fitting 
parameter vm. Again, most of the experimental 
work done is for spherical inclusions with very 
little data available for non-spherical particles. The 
relative tensile modulus EII/E m of boron-filled 
epoxy resin as a function of filler concentration 

and particle shape is illustrated in Fig. 4 according 
to Equation 11. The upper and lower bounds are 
represented by dashed lines 1 and 6 which are cal- 
culated, respectively, from Equations 1 and 2. The 
curves 2, 3, 4 and 5 correspond to aspect ratios 
(O = c[a) of 50, 10, 1 and 0.5, respectively. For 
spherical filler (p = 1), the well known Kemer's 
equation predicts the exact same curve 4. When 
the aspect ratio increases, Fig. 4 shows that 
Equation 11 gradually becomes Equation 1 for 
p ~ ~. When p ~ 0, Equation 11 approaches the 
parallel model Equation 2. The experimental veri- 
fied Kemer's equation for spherical particles and 
rule of mixtures for the longitudinal Young's 
modulus at p ~ ~ are special cases of Equation 11. 

3. Anisotropic moduli 
When a system is filled with non-spherical particles, 
the type and degree of particle orientation can 
completely~ modify the deformation behaviour. 
For orienied filler particles, the composite is aniso- 
tropic in nature. The Cox equation has been limited 
to the discussion of tensile modulus with p >> 1. 
Although many physical properties including ani- 
sotropic elastic moduli may be put in the form of 
the Halpin-Tsai equation, it lacks both the math- 
ematical derivation and physical insight and is ob- 
tained from curve-fitting procedures [ 18]. 

In the rest of the review, the development of a 
unified theory [33-35, 47] of filled polymerswillbe 
summarized which covers a broad range of expres- 
sions from disc-like particles (p ~ 0) to continuous 
long fibres (p-+ ~) by including the anisotropic 
particle-shape effect. The many body problems 
of filler-to-frier interactions at finite concentra- 
tions are handled using the concept of mean field 
theory. In the following sections, it will become 
clear that this approach is not limited to the pro- 
blem of  anisotropic moduli but can easiIy be 
extended to the study of other properties. 

Analyses of elastic moduli of composites usually 
require the determination of the elastic field 
around fillers which is a rather complex and 
tedious problem for non-spherical particles even 
without including the filler-filler interaction 
[48]. Consider fillers as identical spheroids 

(x~ +x~)la 2 +x~le ~ = 1 ( 1 6 )  

with corresponding axes aligned (see Fig. 5). At 
dilute concentration, the approach of Eshelby 
(49, 50) is known for its simplicity in analysing 
the elastic moduli without getting into the un- 
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necessary mathematical complication of solving 
the boundary value problem inherent in this area. 

For simplicity, both the filler and the matrix 
are assumed homogeneous and isotropic and the 
filler particles are firmly bonded to the matrix. 
With this phase geometry, the heterogeneous 
medium becomes transversely isotropic about 
the xs direction and the composite as a whole 
can be described by five independent moduli. 
They are two shear moduli (V23 = #13, #12), two 
Young's moduli (Ell, E• and one bulk modulus 
(k). The anisotropic effect is characterized by the 
ratio of major to minor axes, p = c/a. When P = 1, 
it reduces to the familiar isotropic composite filled 
with spherical particles which has only two inde- 
pendent elastic constants. By directly applying 
Eshelby's transformation of the point force con- 
cept, the elastic moduli at low concentrations [33, 
51-54]  are derived in terms of the isotropic 
moduli characterizing the filler (p~, ks) and matrix 
(#m, kin) and aspect ratio 0 < P  < oo. 

At finite volume fraction ~b of filler, the inter- 
action of filler with filler is treated by the first- 
order mean-fields approximation [34]. Initially, 
this may seem to be a poor approximation, but the 
success of this approach in displaying the essential 
features of the many body interaction will be 
evident later on. 

When the spatial distribution of aligned fibres is 
random and homogeneous, the composite as a 
whole has to be macroscopically homogeneous, i.e. 

1 I v e o ( r  ) a -~ dV--e i j  = 0 (17) 

where et/(r ) is the local strain in the matrix or an 
inclusion due to a uniform strain e A acting on the 

system of volume V. The local strain is a function 
of co-ordinates (r). Generalizing Eshelby's theory, 
the volume average of stresses in an inclusion must 
satisfy the condition 

C(ff)qi j e A f ' ,(m). - (e~)] [(eij) + eli ] = [(e~) A 

(18) 
where ('(f).. (m) vpq~ and C~qij are the elastic moduli of the 
inclusion and matrix, respectively, ( . . - )  is the vol- 

e ume average over the filler, e O is the constrained 
T strain and eli is the transformation strain in the 

equivalent inclusion whose elastic moduli are equal 
to those of the matrix. Both e~ and eia) are a func- 
tion of the co-ordinates. The usual summation 
convention for repeated suffixes over values 1 to 
3 is followed in Equation 18. Applying Equation 
17, the concentration dependence of the relation 
between the constrained and tranformation strains 
is derived to be 

(e~) = (1-O)Sijkz(e~z) (19) 

Here Eshelby's tensor Sijkl is a function of the 
aspect ratio of the ellipsoid and Poisson's ratio 
u m of the matrix. Since both the filler and matrix 
are assumed to be isotropic, five independent 
equations for (eiy) are derived by eliminating the 
average constrained strain between Equation 18 
and 19. In the following, the anisotropic moduli 
will be expressed in terms of the average trans- 
formation strains. 

3.1.  Shear  modul i  
The effective shear moduli #12 and ~h3 of a filled 
polymer are related to (ei~) by [33] 

lAij tim (1 T A = -<eij  > ~/eii ). (20) 
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TABLE I Elastic moduli of four filled and crystalline polymers. 

Glass Boron 
in epoxy in epoxy 

Semicrystalline Glass 
polyethylene in PPO 

f m f m f m f m 

E (GPa)'~ 73.1 3.45 414. 4.14 240. 0.10 73.1 2.60 
v 0.22 0.35 0.20 0.35 0.25 0.45 0.22 0.35 

~I GPa= 101~ dyn!cm -2 = 1.45 X 10 s psi. 

The average transformation strains can be deter- 
mined from Equations 18 and 19 in terms of a 
given uniform applied strain eft .  A straight-forward 
calculation leads to 

(./,/f///rn --  1)~ I I U = I  + 
,Urn 1 + 2(/Z~//~m --  1)(1 --q~)Sii 0 

(ij = 12, 13). (21) 

The explicit expressions for S a m  and $1313 are 
listed in the Appendix. When p = 1,/~2 =/113 = 
(see Appendix) and Equation 21 reduces exactly 
to Equation 14 - the well-known Kerner equation 
which is derived by a completely different and 
elaborate method.  This also demonstrates the 
success and simplicity of  the mean-field approxi- 
mation in dealing with the many body ffdler 
interaction problem. 

3.2.  B u l k  m o d u l u s  
A similar calculation can be extended to the effec- 
tive bulk modulus by considering a uniform applied 
field 

e~  = e ~  = eg = eA/3.  (22) 

The result is 

k 1 4 ( k f / k m  - -  1)(G1 + 2G3)~,  (23) 
k m 2K1G3 + G1K3 

where K i and G i (i = 1, 3) are given in Equation 
12. For spherical fillers, K1 = K 3 ,  GI = G3 (see 

/~12/#.m 

to k . . . .  ~'13//~ rn J 
; ~ . . . .  ASYMPTOTIC VALUES i 
8 \ 

~: :0.20 - 

I I , , , , ~ , [  ' ~ ' ' l , i l l  I I I I I I I i 

i() I I IO IO 2 
ASPECT RATIO p= c/a 

Appendix) and Equation 23 assumes the form of  
Kerner 's  equation, Equation 13. 

3.3. Young's moduli 
The longitudinal Young's modulus has already 
been discussed in the previous section, Equation 
11. Applying a uniform strain e~ with e~ = 
e ~  = 0,the transverse Young's modulus is obtained: 

E• 
- 1 

Em 
+ (kf/km - 1)G3 + (m/Urn -- 1)(G3 ~ § K3D 

where 

= 

2KxG3 + GIK3 (24) 
K1 

1 + 2(m/Um - 1)(1 - ~ ) S l m  

] + (m/~m - 1)(1 - r  - S 3 m )  

1 + 2(/2f//,/m --  1)(1 -- q~)$1212 

3.4. Discussion 
Applying the mean-field approximation which in- 
cludes interactions between a filler and surrounding 
filler particles, the Eshelby theory is generalized 
and applied to determine the five anisotropic 
elastic moduli due to the particle shape at finite 
concentration. To illustrate the  anisotropic behav- 
iour, we consider boron in an epoxy resin with 
properties listed in Table I. The relative longi- 
tudinal, /~13/gm, and tranverse, /~12/].1m, shear 
moduli, given by  Equation 21, are plotted in Fig. 6 

Figure 6 Relative shear moduli. 
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for r = 0.2 and 0.6. g12/#m decreased sharply 
with an increase of p from p < 1 and approaches 
its asymptote near p =  10. The variation of 
/ala//~ m is small and increases with filler concen- 
tration. In Fig. 7, the relative bulk modulus is 
computed and has a minimum at P = 1 as expected. 
The relative longitudinal and transverse Young's 
moduli are shown in Fig. 8. It clearly illustrates 
the reinforcing effort by orienting fibrous filler 
(p > 1) parallel or discs (0 < 1) perpendicular to 
the stretching direction for all values of q~. When 
p = 1,/al~ ~/ax3, Ell = EL, and all the above cal- 
culations agree exactly with those obtained from 
Kerner's formula. There are many modifications of 
Kerner's equations [13, 3 9 - 4 1 , 5 5 - 5 7 ] ,  however, 
no corresponding studies for non-spher.ical particles 
exist at the present time. 

4 .  T h e r m a l  e x p a n s i o n  
The two purposes of this section are: (1) to  inves- 
tigate the particle-shape effect on the thermal 
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Figure 7 Relative bulk modulus. 

expansion of polymeric composites filled with 
aligned ellipsoidal particles at finite concentration, 
and (2) to illustrate the extension of the "mean- 
field theory" developed for elastic moduli to the 
thermal expansion of two-phase materials. The 
prediction of the effective thermal expansion of a 
filled polymer in terms of the phase geometry, 
configuration, and material properties of each 
individual constituent has been a subject of con- 
siderable interest in the past 30 years. Relations 
range from empirical to theoretical analyses. Most 
work is limited to a system with dispersed spheres 
[41, 58-60] and the subject has been reviewed by 
several authors [2, 20]. 

In a similar uniaxially oriented structure dis- 
cussed previously, the effective volumetric thermal 
expansion coefficient 7 is related to the effective 
longitudinal (033) and transverse (0 la = 022 ) linear 
thermal expansion coefficient by 

7 = 2011 + 033. (25) 

Figure 8 Relative Young's moduli. 



The effective linear thermal expansion coefficients 
of a filled polymer can again be expressed in terms 
of the average transformation strains as [35]. 

o. = Om + <e~}O/z,r (ii = 11,33) (26) 

where AT is the temperature change. Owing to 
the difference in the linear thermal expansion 
coefficients of the filler (0f) and matrix (0m), the 
average transformation strains are determined 
using 

2ffq ( e ~ )  + K 3 ( e ~ )  = ( k f / k m ) ( T f  - -  ')'m)AT 
(27) 

where 

Ki = 1 + ( k f / k m  - -  1)[(! --~b)c~ i + r 
(i= 1,3).  

~,~ = l + (UdUm - -  l ) [( l  --0)t3i + r 
(28) 

The derivation of Equation 27 follows the proce- 
dure of mean-field approximation discussed in the 
previous section by application of a generalized 
approach of Eshelby [34]. 

4.1. Linear thermal expansion coefficients 
Substituting the solution of Equation 27 into 
Equation 26, the effective longitudinal, linear, 
thermal expansion coefficient 

033 = 0m + x--tf (3'f--~'m)Glr XmZg, C~ + G K 3 '  (29) 

and the effective transverse, linear, thermal expan- 
sion coefficient 

kf  (')'f - -  V m  )G3 r 
011 = Or,, + k m 2 , ~ ( ~  3 +G~/13 (30) 

are obtained. 

4.2. Volumetric thermal expansion 
coefficient 

The volumetric thermal expansion coefficient 

~/' = "/m -}- kf  ("/f - - " / m ) ( C l  -t- 2 G 3 )  r 
k-2 . 

When p = 1,/31 =/33, ~1 = ~3 = a (see Appendix), 
011 = 033 = 0 and Equations 29-31 reduce to 

7 = 30 

=Tin + 
kf  ("/f - -  ~/m ) q} 

k m 1 + ( k f / k  m --  1)[(1 --r162 + q~] ' 
(32) 

which is the well-known Kerner's equation. 

4.3. Relation between bulk modulus and 
volumetric expansion 

Comparing Equations 12, 23, 28 and 31 at r 0, 
we get 

"/-- Tm kf k - -  km 
- (33)  

")'f - -  "/In km kf  - -  k m ' 

which is valid for all values o f p  [61] - a generali- 
zation of the expression derived for spherical 
inclusions [2]. 

4.4. Discussion 
Relations are derived for the linear and volumetric 
thermal expansion coefficients of a filled polymer 
as a function of p and r Again, the Kerner equation 
which seems consistent on comparison with experi- 
mental data [10] is shown to be a limiting case of 
the present finding. Consider glass in an epoxy 
resin. The longitudinal and transverse, linear, 
thermal expansion coefficients are shown in Fig. 
9 which reveals strong anisotropic dependence on 
the particle shape. Fig. 10 shows that the volu- 
metric thermal expansion coefficient is not sensi- 
tive to the particle shape. The effect of particle 
shape diminishes with increasing filler concen- 
tration. 

5.  Stress c o n c e n t r a t i o n  

The ratio of  the maximum stress to the applied 
stress defines the stress concentration factor. For 
aligned prolate spheroids (see Equation 16 with 
c > a ) ,  the maximum stress occurs at (Xl, x2, 
x3) = (0, 0, c) where cohesive and/or adhesive 
failure may take place. Therefore, the determi- 
nation of the stress concentration is essential for 
heterogeneous materials. 

Traditionally, the stress concentration calcu- 
lation has been limited to a single isolated inclu- 
sion [62, 63] which does not include the concen- 
tration dependence. The analysis to include the 
filler-filler interaction follows exactly the mean- 
field approach discussed in previous sections. The 
volume average of internal stresses, (Opq), inside 
aligned prolate spheroids due to uniformed applied 
stress oi A are determined from [47] 

(1 - r [(Xf - Xm )sk kp q 6 ;; + 2(uf - Urn) SUp q] %q)  

-~- )km (O)6ij "t- 2/2m(Oiy ) : )kfaA 6ij "+ 2/2fo~0 
(34) 

where X = k -  2/2/3 is the Lain6 constant, 6# is 
the Kronecker delta, and a is the stress invariant. 
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Consider a uniform tensile stress o3~ as the only 
non-trivial stress applied to the system. Solving 
Equation 34, the stress concentration factor is 

(o33) (kf/km)G1 + 2(Pf/Pm)K1 
S -= oA -- 2K1G3 + G1K3 (35) 

The above equation contains both shape and con- 
centration effects of  filler. When r  and 
p = 1, Equation 35 becomes 

l r kdkm 2Pf/P.m ] 
S = ~ i + (k f / km  1)a q -- 1 + (Pf/Pm -- 1)J ' 

(36) 

which is the classical Goodier equation [62]. For 
illustration, consider glass-filled polyphenylene 
oxide. The general behaviour of the stress concen- 
tration factor is shown in Fig. 11 as a function of 
p and q~. 

6. Viscoelastic behaviour 
In an elastic body under constant load, nothing 
depends on time. In a viscoelastic body all the 
stresses, strains and displacements are time- 
dependent. The effective relaxation moduli of 
statistically homogeneous viscoelastic composites 
are defined by [64] 

oi](t ) = J--it ci]lel(t--S) ekl(S ) ds. (37) 

When Equation 37 is subjected to Fourier trans- 
form, it can be written in the form 

oil(co ) = C/~kt(co) ekl(o~ ). (38) 

The complex moduli Ci~kz can be separated into 

the real and imaginary parts 

* ' + " " ( 3 9 )  Cijkl = Ci]te l lCijM. 

The real part is called the storage moduli and the 
imaginary part defines the energy dissipation and 
is called the loss moduli. Equation 38 applies to 
both the filler and matrix. When the Idler and 
matrix are assumed isotropic, Equation 38 leads to 
the following form of the correspondence principle 
[65, 66]: if the solution of an elastic body is 
known, the corresponding viscoelastic problem can 
be found by replacing the known bulk and shear 
elastic moduli of the filler and matrix and the 
unknown anisotropic elastic moduli by their 
corresponding complex moduli. Limitations of  the 
correspondence principle have been reviewed by 
Schapery [66]. 

6.1.  R e l a x a t i o n  m o d u l i  

Extension of the elastic models in this review to 
linear viscoelastic materials is easily accomplished 
by straightforward application of the correspon- 
dence principle. The correspondence principle 
has already been applied to the Kerner [67], 
Takayanagi [68] and many other equations for 
spherical fillers [66] (O = 1) and continuous 
fibres [69] ( p ~ o ) .  In mose cases, Poisson's 
ratio of the matrix is assumed to be real [12] 
(i.e. Pm = 0 and p* ' m = vm = Vm). The expression 
for effective complex shear moduli, p*, according 
to Kerner's equation is 

= 1 + �9 (40) 
Pm /q~ + (/2~' -- P~n)(1 --r 
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Figure 12 Shear modulus of polyurethane 
rubber filled with increasing amounts of sodium 
chloride (from Schwarzl, et al. [4, 70] ). 

Equation 40 has the same form as Equation 14, 
except the dynamic shear moduli (g*, #* ,  p~) 
replace the corresponding elastic moduli. Explicit 
expressions for the storage and loss moduli, and 
loss tangent, have been worked out for Equation 
40, by Dickie [67]. In many practical applications, 
the filler is often assumed elastic (i.e. g~ = pf) 
which simplifies Equation 40 even further. 

Viscoeleastic responses generally change con- 
siderably in the region of the glass transition tem- 
perature. The general behaviour of elastic fillers in 
a viscoelastic matrix is illustrated in Fig, 12 and 13 
where sodium chloride is dispersed in polyurethane 
rubber [70]. While the elastic modulus (pf) of 
fillers is insensitive to the temperature, the shear 
moduh of the matrix drops sharply at its glass 
transition temperature i.e. 

( P f / P m ) r <  rg < ( P f / g m ) T > m  a �9 (41) 

Consistent with Equation 40, Fig. 12 shows that 
the Idlers have a larger effect in raising the shear 
modulus above Tg than below it. The effect of 
elastic fillers on the dissipation of energy in terms 
of loss tangent is shown in Fig. 13. Since the dissi- 
pation of elastic fillers is zero, the loss tangent of 
polymeric composites may be approximated by [4] 

tan 6 = p" /p '  ~-- (1 -- ~)tan 6m �9 (42) 

This explains why fillers often decrease the peaks 
of energy dissipation as illustrated in Fig. 13. 
Fillers do not shift the glass transition temperature 
of the matrix polymer in two-phase mixtures. 
However, they have the pronounced effect of 
broadening the transition region at higher filler 
concentration which is due to the increase of the 
ratio la"/p' for T >  Tg. 

For non-spherical inclusions, the basic approach 
to the problem is the same. For practical reasons, 
we again assume that the filler is elastic and the 
matrix is viscoelastic with v m being real. Applying 
the correspondence principle to Equation 11, the 
relaxation longitudinal Young's modulus is 

E_~ = 1 + ( k r / k *  -- 1)a* + 2 (p f / p*  -- 1)K* 

E *  2 K ' G *  + * * GIKa (43) 
where 

K ?  = 1 + (kr/k*=--  1)(1 --~)~ 
(/ = 1,3) 

G? = 1 + ( p f / p * - -  1)(1 --r 

and 
E *  = 9kmPm 

3k*m + U~ 
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Explicit expressions for E ' ,  E"  and tan 6 = E"/E '  
can easily be worked out by a straightforward 
algebraic rearrangement. A similar substitution o f  
the correspondence principle may apply to all 
other elastic equations. 

6 .2  Creep  e l o n g a t i o n  
As a thermodynamic extension of  Equation 37 for 
thermorheological materials, the constitutive 
equations with a time-dependent effective strain 
and stress, and temperature can be written as [66] 

eu(t)  = uk~(t -- s) ak z(s) ds 

+ o i j ( t - s )  s) 
~ - - e o  

(44) 

where J~ikz(t) are creep functions and Ou(t ) de- 
fines the strain response to the temperature 
change - a generalization of  the linear coefficient 
of  thermal expansions. 

When a constant tensile stress (%,  in the x3 
direction) is applied to a specimen under iso- 
thermal conditions (ib = 0), the relative creep of  a 
filled, e(t) ,  to unfilled, era(t), polymers can be 
determined by [4] 

e( t ) /em(t  ) = Em(t) /Ei t ( t  ) . (45) 

The effective relaxation tensile modulus, Eli(t), 

may be evaluated by either of  two methods. The 
first method is a direct Fourier inversion o f  
Equation 43 which is exact but consumes a great 
deal of  computing time. The analytical expression 
is not possible in general. The other is the quasi- 
elastic method [58].  A viscoelastic solution is 
approximated by an elastic solution wherein all 
elastic constants are replaced by time-dependent 
relaxation moduli. Applying the approximate 
quasi-elastic method to Equation 11 for EjI , the 
creep of  filled polymers can be calculated simply 
from the creep of  the unfilled polymer (I/Era(t)) .  
Fig. 14 shows that Equation 45 holds very well 
for polyethylene filled with kaolin [71].  The 
presence o f  an elastic filler in fact reduces the 

2.s 
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(D 

i i i i 

x = PREDICTED VALUES ~ 
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I ~ ,~o ,do 
TIME (MIN) 

IO 4 

Figure 14 Creep of polyethylene unfilled and filled with 
kaolin (~b = 0.20, T = 60 ~ C) = creep calculated from 
Equation 45 (from Nielsen [71 ]). 
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the creep as long as there is no serious dewetting 
of the particles. 

In the non-isothermal situation, the creep is 
affected by temperature changes mainly through 
the thermal expansion (7~, 3%) and stress relax- 
ation. In general, both undergo a sudden change 
in the neighbourhood of the T~s. According to 
Equation 44, the extension of Equation 45 is 

f2 e( t )  = ao/Ei l ( t  ) + 0 3 3 ( t - - s )  T(s)  ds . (46) 

The longitudinal thermal function, 033(t) ,  may 
be evaluated in the same way as Ell(t ) based on 
the quasi-elastic method. Equation 29 leads to 

k~ (~/~ - ~'m)G1 ( t )r  
0 3 3  = 0 m -~- - -  

kin(t) 2-K, (t)(~3 (t) + (~1 (t)-g3 (t) '  
where (47) 

-~i(t)  = 1 + [ k f / k m ( t ) - -  l] [(1 -r  i + r 

Gi(t ) = 1 + [Uf/Pm(t) -- 1] [(1 --r + q~] 

( i= 1,3). 
A typical elastic filler and viscoelastic matrix with 
real u m and constant 7f and 7m are assumed in the 
above equation. The value of 7m depends on 
whether the temperature is above or below the Tg 
of matrix material. Finally, the quasi-elastic 
method can be applied just as easily to all other 
elastic relations reviewed in this paper. 

7. Conclusions 
(1) The existing models for predicting the elastic 
moduli of filled polymers containing particles 
of shape other than spheres and infinitely long 
fibres are reviewed. The applicability and limi- 
tation of these equations are discussed. 

(2) The development of a unified theory of 
filled polymers ~ith non-spherical particles is 
summarized. The theory works well when applied 
to anisotropic moduli, thermal expansion coeffi- 
cients, stress concentration and viscoelastic 
responses. 

(3) The anisotropic particle-shape effect can 
best be treated by the approach of Eshelby at 
dilute concentrations. The interaction of filler- 
filler at finite concentrations has been success- 
fully analysed using a mean-field approximation. 

(4) In the case of anisotropic elastic moduli and 
thermal expansion coefficients, the findings are: 
(a) the experimentally verified Kerner's equations 
(p = 1) for moduli and thermal expansions and 
rule of mixtures for longitudinal Young's modulus 

at p ~ oo are special cases of relations based on 
the unified theory; 
(b) the volumetric thermal expansion varies only 
slightly with the aspect ratio of a spheroid. How- 
ever, the linear expansions show a strong depen- 
dence on the particle shape; 
(c) a relation between the bulk moduli and thermal 
expansion coefficients is generalized to all values 
o fp  (0 < p < oo); 
(d) the continuous variation of elastic moduli from 
isotropic (two moduli, p = 1) to transverse iso- 
tropic (five moduli, p g= 1) situations are clearly 
illustrated. 

(5) Both the concentration and particle-shape 
dependence have been included in a relation for 
the stress concentration factor. The classical 
Goodier equation for spherical inclusions at 
dilute concentration is the special case. 

(6) Extension of the elastic models in this 
review to linear viscoelastic materials is easily 
accomplished by the direct application of the 
corresponding principle and quasi-elastic method, 
respectively, to the relaxation moduli and creep 
compliances. The coupling of the creep with 
thermal expansion under non-isothermal situations 
is also discussed. 

(7) The discussion has been limited to the 
practical interest case of transverse isotropic 
composites with an isotropic filler and matrix. 
The analysis can easily be generalized to an ortho- 
tropic situation of nine moduli for ellipsoidal 
inclusions. The inclusion of anisotropy of filler 
and matrix is straightforward, although tedious 
in some cases. 

(8) The emphasis of the review has been on the 
concept of a simple unified approach to the effect 
of particle shape on the mechanical properties 
of filled polymers. Subjects that have been re- 
viewed elsewhere are not repeated here. The uni- 
fied theory should have even broader application 
to topics such as dielectric constants, viscosity 
and thermal conductivity of two-phase materials. 

Appendix 
The pertinent parameters for Equations 11,21 and 
24 are listed in the following: 

al  = 47rQ/3 - 2 (2 r r - I )R  

~3 = 4 n Q / 3  + 4(I--zr)R 

(4n 4zr--3I  I ~  ~ - 7  ] 
~, = ,Q- -4 ( I - -27 r )R  
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_ 7  7 Q + (47r - - / ) R  

2 (  1 4  ff_~ 3I ) o + 2iR 
2S1212 = ~- rr 4 1 - - p  z 

I + p z 47r - -  3 I  
2S1313 = T 1 - - p  2 Q + ( 4 7 r - - O R  

( 7 4 r r - 3 1 1 1 2  1 ~ /  S m a  --$3311 = 7r - - ~ ] O  + ( 4 r r - O R  

where  
3 1 1 1 - -  2u m 

Q -  R -  
81r 1 - -Pm 87r 1 - -Um 

and 

27rp 
(1 - p~)~'~ [ c o s - '  p - p(1 - -  p ~ )  ~ ], 

f o r p  < 1 
I =  

2rrp _ 1)1/z 1 
7~)3~2 D(;  2 - c o s h -  0] O 2 

f o r p >  1. 

When P + 1, 

we have 

I = 4rr/3 

41r --  31 4rr 

1 __p2 5 

1 l - k / J  m 
O~ 1 = 0~ 3 ~ 0~ -- 

3 1 - - u  m 

= 281212 = 281313 = 81111--53311 

2 4 - -  5v m - - - - -~=  
15 1 - - P  m 
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